
f 

TECHNKAL NOTE 
0 -41 

AN APPRSXI?Y'IATE J-NALYSIS OF 'UNSTEADY VAPORIZATION 

NE-a,R THE STAGNATION POINT OF BLUNT BODIES 

By Leonard Roberts 

Langley Research Center 
Langley Field, Va. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON September 1959 
(hASA-Tb-D-41) A C  A P E f i C X I W A T E  dlALYSLS OF 

CLSIIEACY V A E O b 1 2 A 3 I C E  BEBE I : € E  SIAGLATICN 
E C I L l  OF ELCHI:  L C E 1 E S  ( N A S A .  Lanqley  
E E S E d E C h  C e n t e r )  3 3  & 

N89-7C7 17 

Unclas 
00102  0194265 



1c 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-41 

AN APPROXIMATE ANALYSIS OF UNSWDY VAPORIZATION 

NEAR PIE STAGNATION POINT OF BLUNT BODIES 

By Leonard Roberts 

SUMMARY 
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5 
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An approximate analysis of the unsteady vaporization of material 
from blunt bodies due to aerodynamic heating is presented. 
taneous nonlinear equations that can be solved to give the unsteady mass 
loss and the unsteady accumulation of heat by the remaining solid are 
dcr i~ec i .  The vaporization of material by a steady stream (the condi- 

Two simul- 

+< b L . d L A u  n m c  m e t  with in laboratory eqeriments) is treated i i i  detail. 

INTRODUCTION 

The cooling of blunt-nosed bodies in high-speed flight by ablation 
has been shown to be highly efficient when appropriate materials are 
used. A comprehensive review of cooling by mass addition to the boundary 
layer is included in reference 1. 
directly from the solid state appears to be particularly suitable in view 
of the fact that the mass lost from the body convects a large amount of 
heat away from the near vicinity of the stagnation point, as was shown 
by the analysis of reference 2. An important feature of any practical 
application of shielding by vaporization, however, is the unsteady accu- 
mulation of heat by the remaining solid material and the effect of this 
unsteadiness on the rate of vaporization. Any analysis of ablation- 
shield requirements for a reentry vehicle, for example, must consider 
the weight of material required to absorb that heat which is conducted 
toward the interior from the ablation surface. In the testing of mate- 
rials, also, the conduction of heat may affect the experimental evalua- 
tion of the effective heat capacity of the material. 

The use of materials which vaporize 

Previous work on the conduction problem (refs. 3 and 4) has neglected 
entirely the shielding effect of the gas layer and the problem has been 
solved under the assumption that the heat-transfer rate to the heated 
surface is known; however, the unsteady shielding effect of a molten film 
has been treated (ref. 5). 
heating the heat-transfer rate is itself a function of the mass-loss rate 

When the vaporization is caused by aerodynamic 
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(because of the gas layer shielding effect) and neglect of this effect 
C ~ E  r e s u l t  in gross errors. 

.I 

As was done in references 3 and 4, the material is considered to be 
of t . h L c h e s s  G y C G t e i -  t h r l  Liie heat penetration thickness so that the 
material can be considered semi-infinite in thickness for the purpose of 
analysis. The heat conduction problem before and during ablation is 
treated in a manner somewhat similar to that employed in reference 4, 
but the present method includes the important boundary-layer shielding 
effect . 

SYMBOLS 

A function of t (eq. 6) 

a,b arbitrary constants 

C specific heat 
- effective specific heat of vapor in gas boundary layer cP 

D dimensionless mass loss per unit area (eq. (51)) 

EnjEn' constants (eqs. ( 2 3 )  and (24)) 

h heat-transf er coefficient 

Heff effective heat capacity (eq. (55)) 

k thermal conductivity 

L latent heat of vaporization 

m mass loss per unit area 

Prandtl number NPr 

Schmidt number NSc 

P dimensionless'time 

Q heat transfer per unit area 

9 heat-transfer rate per unit area 
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T temperature 

t time 

v 
W effective concentration of vapor in gas boundary layer 

dimensionless rate of mass loss  per unit area (eq. ( 2 7 ) )  

- 
X coordinate along surface 

Y coordinate normal to surface 

z transformed coordinate normal to surface 

U fractional temperature rise of vapor in gas boundary layer 

P function of pa (eq. (45)) 

6 dimensionless integral t i i ickiisss (ea. (27) 

f enth;tipy i-atic (ea, ( 2 7 ) )  

P density 

7 dimensionless time (eq. (27)) 

a integral thickness of heated layer (eq. (2)) 

Subscripts : 

a vaporization condition 

b initial, unheated condition 

e 

S surf ace 

0 no vaporization 

1 vapor 

2 air 

external to aerodynamic boundary layer 
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AXALYSI s 

For the  purpose of t.he p . r ~ c e c t  ~ r s > ~ - z < s  it is assumed that the  abla-  
t i o n  mater ia l  i s  semi- inf ini te  i n  ex ten t  ( f i g .  1); such an approximation 
i s  va l id  near the s tagnat ion point  of blunt-nosed bodies when the  th ick-  
ness of the  thermal boundary l aye r  within the  material i s  small compared 
with the t o t a l  thickness.  It i s  a l s o  assumed t h a t  mean constant values 
of pb, cbs and % can be used and t h a t  the  ab la t ion  mater ia l  vaporizes 

a t  a constant temperature Ta. 
vaporization and the  surface temperature i s  dependent on the  phase 
equilibrium of the s o l i d  with i t s  vapor, and vaporizat ion occurs over a 
wide range of Ts; i n  prac t ice ,  however, the  r a t e  of vaporizat ion i s  
negl igibly small except when the  surface temperature l i e s  within a l i m -  
i t e d  range which includes the  mean value Ta used here in .  Before heat ing 
begins the  material i s  a t  uniform temperature 
t i o n  from the  surface and of combustion a t  the surface are not considered, 
although they may be included with only minor a l t e r a t i o n  s ince the  surface 
temperature i s  considered t o  be constant during ab la t ion .  

The exact r e l a t i o n  between the  rate of 

Ts 

Tb. The e f f e c t s  of radia-  

The Approximate Equations 

The system of coordinates i s  such t h a t  t he  o r ig in  i s  always a t  the  
stagnation point  i n  the vaporizing surface.  Before ab la t ion  starts x 
i s  measured along, and y normal t o ,  t he  surface; during ab la t ion ,  
however, coordinates (x ,z)  which move with the receding surface are 
used; thus 

z = y +  m(t> 
'b 

and z = 0 i s  the  ab la t ion  surface.  

F i r s t ,  an energy balance equation i s  wr i t t en  as follows: 

T o t a l  heat Heat absorbed by Heat accumulated by 
input a t  ablated mater ia l  remaining material 
surf ace 

Introducing a thickness 8 defined by 
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equatian (1) may be written 

or, in differential form, 

(4) 

Equation ( 3 )  is an exact energy-balance equation which replaces the 
heat-conduction equation. 

An additional equation is found by considering the boundary condi- 
tion at the ablation surface; thus 

Heat-transfer Rate of heat Heat-transfer 
rate to surface absorbed by rate to interior 

ablation 

Since 8 
can be written 

is the only thickness associated with the problem, equation (5) 

where A(t) is a dimensionless coefficient, the main variation of 
TS - Tb being contained in the factor e 

At this point it is useful to ascertain which quantities are unhown; 
firstly, m and 8 are the basic unknowns; secondly, the heat-transfer 
rate q(t) is not known in general since the heat-transfer rate to the 
surface during ablation is itself a function of the mass loss rate. 
Throughout this analysis the quasisteady relation between heat-transfer 
rate and mss-loss rate as developed in reference 6 and used in refer- 
ence 2 will be used; that is, 
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where 

%(t)  hea t - t ransfer  r a t e  experienced by a nonablating body a t  a 
surface temperature Ta considered a known quant i ty  

U f a c t o r  which ind ica t e s  t h a t  f r a c t i o n  of t h e  temperature d i f -  
L ference Te - Ta through which the  mass m i s  r a i sed  during 

convection i n  t h e  gas l a y e r  

- e f f e c t i v e  mean s p e c i f i c  heat of t h i s  mass i n  gaseous form cP 

and 

Expressions f o r  u and ?+, were derived i n  re ference  6 and a re :  

- 
i j + c  (1-3) 

P = c p , l  P,2 
C (9) 

where i j  as a func t ion  of NSc,a i s  given i n  re ference  6. 

The unknown quant i ty  q ( t )  i s  now eliminated from both equa- 
t i o n s  (4)  and (6) by use of equation (7)  t o  give 

and 

I n  order t o  solve equations (10) and (11) t h e  func t ion  A ( t )  should be 
known; then, t he  equations could be solved f o r  Ts and 8 during 

per iods  when ablatim does not  Occur ($ I 0) or  f o r  8 and m when 

a b l a t i o n  does occur (T, E Ta) . 

3 
5 
6 
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The method used herein assumes that A(t) is a slowly varying 
function which may be replaced by its quasisteady value; this assumption 
appears to be reasonable, inasmuch as the main variation of the term 

in equation (5) is contained in the factor kb Ts Tb; how- 
8 

ever, the quasisteady ablation problem is easily solved (see appendix A) 
and gives simply 

so that equation (11) becomes 

Equations (10) and (13) are the basic approximate equations to be 
used i n  the analysis that follows. The quantities T, and 8 are 

unkiown when = 0; the quantities m and 9 are uniuiown when 
dt 

m is = T,; a l i  otiier qantities in equations (10) and (13) are assumed to 
be known constants except qg(t) and Te(t), which are assumed to be 

known functions of t. 

The validity of the approximation A(t) z 1 is investigated by 
comparing the results derived from equations (10) and (13) with avail- 
able exact (numerical) solutions. 

Preablation Heating 

The first quantities of interest are the time required to heat the 
surface up to the ablation temperature and the total amount of heat 
absorbed by the material during this period. When @ = 0 (before 

ablation), equations (10) and (13) reduce to 
dt 

and 

' s  - 'b 
8 

= % 

Equation (14),  however, may be integrated to give 
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t 

and 8 may be eliminated from equations (15) and (16) t o  give 

The surface temperature during the  preabla t ion  per iod i s  thus 

The time t, a t  which ab la t ion  starts i s  found by solving 

and t h e  heat absorbed by the  ma te r i a l  a t  t h i s  time i s  

A s  a check on the accuracy of equation (IS), heat ing rstes of the  form 

are considered, where a and b are a r b i t r a r y  cons tan ts .  In tegra t ion  
of equation (21) gives 

and equation (18) then gives  
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T, = T + E,a ( b )1/2j;r+1/2 
'b'bkb 

b 

where 
-1/2 

En = (n + 1) 

The exact expression for Ts is derived in appendix B for the same 
heating rates (eq. (21))  and the solution may be written in the form 

A comparison of equations (23) and (24) shows that the solutions differ 
only by a constant factor; thus, 

The time ta at which ablation starts is found by 
tion ( 1 9 )  and is 

1 - 
-&bcb%i2 - 'b).] 2n+l 

= En 

solving equa- 
u 

tion ( 1 9 )  and is 
-" 

En 

1 
2n+l 
- 

J I 

whereas the exact value is 
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Ratios of the  values of ta and obtained by the  approximate 
formulas t o  values obtained by t h e  exact  formulas have been calculated 
f o r  n = 0 t o  4 and are shown i n  table I, which follows: 

Table I 

1.27 

1.042 

1.017 

1.009 

1.006 

1.27 

1.086 

1.051 

1.036 

1.028 

It i s  seen from t a b l e  I t h a t  t he  f r a c t i o n a l  e r r o r s  i n  ta and are 
extremely small f o r  smooth heating rates (n  > 1). 
i s  discontinuous a t  t = 0 

When the  heat ing rate 
(n  = 0) , however, t he  e r r o r s  are 27 percent.  

The aerodynamic heat ing r a t e s  experienced by bodies i n  f l i g h t  would 
probably correspond t o  
A E 1 

n > 1. 
i s  va l id  f o r  smooth preablat ion heat ing.  

It i s  concluded t h a t  the  approximation 

Unsteady Ablation 

During periods of ab la t ion  when T, = Ta, equations (10) and (13) 
reduce t o  

and 
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When the term Gp(Te - Ta) is neglected (neglect of this term is 
not justified for most problems where the heating is caused aerodynami- 
ca l ly ) ,  equations (25) and (26) are similar to equations derived in 
reference 4 where a polynomial temperature profile was assumed. 

The dimensionless variables 7, 6 ,  V, and E are now defined as 

and inserted into equations ( 2 3 )  and (26) to give 

% 1  1 = v ( 1 -  E) + - -  
Q o S  

where the relations 

and 
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have been used 111 e y ~ a t l s z s  ( 2 2 )  an6 <'&j. I n  general ,  V ,  E ,  6, and 

- a re  a l l  functions of T .  Equations (28) and (29) fo rm a system of 

two nonlinear d i f f e r e n t i a l  equations from which V and 6 can be de te r -  
mined as  functions of 
t r ans fe r  rate t o  the  nonablating body); and %, ea, ea, and t a  a r e  

determined from the  so lu t ion  of t he  preablat ion heat ing problem. 

s, 
QO 

T; % i s  a known funct ion (being the  heat-  

A s  a f u r t h e r  check on the  approximation A 3 1, equations (28) 
and (29) a re  solved f o r  t he  simple case 

%(t) = s, = Const 

which i s  the  case considered i n  reference 3 .  

"he time ta when ab la t ion  starts i s  given by 

Theref ore, 

The thickness 8, a t  t h i s  time i s  given, from equation (15), as 

Equations (28) and (29) now reduce t o  

L 
5 
5 
6 
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l = V + 6 '  

1 = v ( l  - E) + 1 
( 3 3 )  

(34) 

Elimination of V from equations (33) and (34) gives  a nonlinear 
d i f f e r e n t i a l  equation f o r  6 

which has the  solut ion,  f o r  E f 0 ,  

1 - E  - T = A(. 1 -  - 6 - - 1 log 
E E 

and for E = 0,  

"he dimensionless mss-loss ra t e  V i s  given by 

v = -(l 1 - +) 1 - €  

where 6 i s  known impl ic i t ly .  A s  T +m, steady ab la t ion  i s  approached 
and, as can be seen from equation ( 3 3 ) ,  V -1, and from equation (35), 

I 6 4-. 
E 

A comparison of the  r e s u l t s  given by equations ( 3 6 )  o r  equations (37) 
n = 0) i s  shown and (38) with r e s u l t s  of reference 3 (which correspond t o  

i n  figure 2. (The enthalpy parameter E: here in  i s  r e l a t e d  t o  the  enthalpy 

parameter m of reference 3 by E = , and the  dimensionless m 

2 
m + -  1 p 

mass-loss r a t e  V i s  r e l a t e d  t o  the quant i ty  p of reference 3 by 
(1 - E)V = p . )  

The dimensionless quant i ty  V(T) i s  noted t o  be i n  good agreement 
with the  results of reference 3 ,  although the  quant i ty  
t with 7 ( t h a t  is, 7 = tha) is i n  considerable e r r o r .  (See t a b l e  I 
witln n = 0 . )  

t, which relates 

This agreement f o r  t he  dimensionless parameters suggests 
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that the approximate method m y  he used with accuracy to find the dimen- 
sionless quantities V and 6 in terms of T but that the value of 
ta 
a linear h e e t - c s c k c t l u ~  equation) should be obtained by a more accurate 
analysis when discontinuities in the heating rate occur. 

obtained from the preablation heating problem (which involves only 

The use of the approximation A = 1 is seen to agree exactly with 
the steady-state solution, gives good agreement with exact results for 
the preablation heating problem except when discontinuous heating rates 
are involved, and agrees with an available numerical solution of an 
unsteady ablation problem. This agreement is considered sufficient 
justification for the use of equations (10) and (13) for determining 
rate of vaporization and accumulation of heat during the entire heating 
period. 

L 
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A P P L I C A T I O N  TO T E S T I N G  OF ABLATION MATERIALS 

The analysis is now applied to the type of ablation experienced by 
a blunt-nosed body placed in a steady stream, that is, in a stream having & 

constant velocity and temperature at far distances upstream of the body. 
These are the conditions which prevail in the simplest type of experiment 
designed to investigate the manner of ablation of different materials. 

The heat-transfer rate to the nonablating body is assumed to be of 
the form 

where h is a constant heat-transfer coefficient but Ts varies 
( Tb < Ts < Ta) during the preablation heating period. 

Preablation Heating 

The heating rate experienced by the model is discontinuous at 
t = 0; the exact solution to the preablation heating problem is there- 
fore used. The relevant solution to the conduction equation is 
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A s  indicated previously, the ablation temperature Ta depends on 
the phase equilibrium of the solid with its vapor and in theory may be 
determined fram the Clausius-Clapeyron relation; in practice, however, 
it is simpler to make pyrophotometric observations of the ablation s u r -  
face to determine Ta. 

The preablation heating period t, is found by letting y = 0 and 
T = Ta; thus, 

where 

h2ta 
P c  112 

Ta - Tb = 1 - e  bkberfc h(pb2%) - Tb 

For large values of Pa 

or 

In terms of ta, 

. Figure 3 shows the variation of Te - Ta Te - Ta 
Te - Tb *e - Tb fcr small values of 

with Pa. 



I 16 

The heat ccjiiteiii of t h e  material when t = ta i s  obtained, by 
using equation (39) ,  as 

= Pbcb('2a - Tb)ea 

- - Tta h(Te - Ts)dt 
J O  

I 

In tegra t ion  by p a r t s  of the right-hand side of equation (43) y i e lds  

o r ,  when equation (40) i s  used, 

L 
5 

(43)  

as 

Unsteady Ablation 

During ab la t ion ,  no exact  method i s  available f o r  t h e  so lu t ion  of 
t h e  heating problem, and the  approximate equations (28)  and ( 2 9 )  are 
used. Now ~ / s ,  = 1 and the  constant  quant i ty  &/gata i s  determined 

%'a Pae P aer fc  Pa 112 

5 
6 

where 
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% = h(T, - Tal 

and 

Equations (28) and (29) now reduce t o  

1 1 = v(1 - E) + 

which have the  so lu t ion  f o r  E f 0, 

or,  for E = 0, 

(47) 
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and 

The function V ( T , E )  is shown in figure 4 as a function of ~(P~)T. 
It is seen that equations (48a) and (48b) differ from equations (36) 
and (37) only by a factor p(Pa) which appears on the left-hand side. 

The variation of @(Pa) with Pa is shown in figure 3. For small 

values of Pa, use of the relations 

and 

epa = 1 + Pa + Order(Pa2) 

with equation (45) gives 

as Pa 3 03, 

P 4 2  
For large values of Pa, since e &erfc Pa 

equation (45) gives p(Pa) 3 1/2; thus 

1 2 P(Pa) > 1/2 

The total dimensionless mass loss D is found by integration of 
equation (46) and is written 

P(Pa)D = p(Pa)T + 1 - 6 ( 5 0 )  

where 

Figure 5 shows p(Pa)D as a function of ~(P,)T. 

L 
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Steady Ablation 
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The steady s t a t e  i s  approached when €if+ 0; then V +  1 and 

where 

 la. = h(Te - Ta) 

The temperature d i s t r i b u t i o n  i s  t h a t  given i n  appendix A 

It i s  seen t h a t  f o r  l a rge  values of Te - Ta the  temperature d i s -  
t r i b u t i o n  takes  t h e  l imi t ing  form 

DISCUSSION 

The preceding anal rsis of ablat ion due t o  aerodynamic heat ing by a 
s teady flow of hot  air  may be used i n  conjunction with experimentally 
determined values of the  heat- t ransfer  r a t e  and mass l o s s  t o  determine 
the  s u i t a b i l i t y  of materials  for use as an ab la t ion  sh ie ld .  

The behavior of ab la t ion  mater ia l  during preabla t ion  heat ing i s  
of extreme i n t e r e s t  when the  heating r a t e  is  small and the  t i m e  t a  may 
be r e l a t i v e l y  la rge ;  under these conditions the material may become so f t  
and change shape i n  an undesirable manner. 
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The f i r s t  quant i ty  of i n t e r e s t  i s  the z b l a t i s n  temperature Ta; 
t h i s  value may be determined from the  ana lys i s  of preablat ion heat ing.  
When h and p c b% are known, equation (40) may be used t o  f i n d  
rn - - Ab 

using observed values of ta, so t h a t  Ta i s  then known i n  
Te - Tb 
terms of Te and Tb. 

The quant i ty  of primary i n t e r e s t  during ab la t ion  i s  t h e  e f f ec t ive  
hea t  capacity of t he  mater ia l  which i s  conveniently defined f o r  steady- 
state ablat ion as 

which i s  obtained from equation (10) with Ts = Ta and 0 = constant .  
The quant i ty  Heff can be determined from equation (51) as 

Thus, Heff may be calculated by use of observed values of the  
t o t a l  mass loss  m, the  time of t he  experiment t, and the  associated 

value of D found from f igu re  5 as a funct ion of T = - - 1 and 
t a 

, which i s  shown as a funct ion of Pa i n  figure 3 .  = (cab) p c k 

It is  seen t h a t  i n  t h i s  way the  s teady-state  value of Kerf can be 
determined, although the  steady s t a t e  i s  not necessar i ly  achieved 
experimentally. 

L 
5 
5 
6 

If a s e r i e s  of tests i s  ca r r i ed  out ,  i n  which the  ex te rna l  t e m -  
perature  (i .e., t he  s tagnat ion temperature near t he  s tagnat ion po in t )  
takes  various constant values,  experimental values of 

and CLC' can be determined from Heff through equation (55). 
Cb(Ta - Tb) + L 

P 

CONCLUSION . 
An approximate ana lys i s  has been presented which descr ibes  t h e  

rate of mass l o s s  from, and the  accumulation of hea t  by, material which 
i s  vaporizing because of aerodynamic heat ing.  I n  t h i s  ana lys i s  the  



2i 

combined e f f e c t s  of boundary-layer shielding and hea t  conduction t o  the  
i n t e r i o r  a r e  represented and the  approximation involved i s  j u s t i f i e d  by 
comparing the  r e s u l t s  with known exact ca lcu la t ions .  

The ana lys i s  i s  then applied t o  the vaporizat ion of blunt-nosed 
bodies placed i n  a steady stream - f o r  example, the  conditions m e t  with 
i n  a simple experiment. It i s  shown t h a t  the  steady value of t he  e f fec-  
t i v e  hea t  capaci ty  of t he  material can be determined even when t h e  heat ing 
period during the  experiment may not be s u f f i c i e n t l y  long t o  e s t a b l i s h  
the  steady state. 

5 
6 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley F ie ld ,  Va . ,  June 12, 1959. 
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P P E r n I X  A 

The heat  conduction eque,tion f o r  a s t e a d i l y  ab la t ing  s o l i d  i s  

d2T dT 
dz2 b d z  

kb - = i c  

Equation ( A l )  expresses a balance of d i f fus ion  of heat  t o  the  i n t e r i o r  
and convection of heat  by t h e  material (which i s  moving with ve loc i ty  
G/po toward i t s  ab la t ion  sur face . )  

The so lu t ion  i s  w r i t t e n  
T"cb 
-Z 

T - Tb kb 

Ta Tb 
= e  

which i s  seen t o  s a t i s f y  the  conditions:  at y = 0, T = T,; a t  
y + -m, T = Tb. 

From equation (A2) t h e  i n t e g r a l  thickness  8 i s  found as 

mcb 
kb e =  r o  ekb dz = 7 

J -m mcb 

The general  equations during ab la t ion  (eqs.  (10) and (11) derived 
i n  the  main t e x t )  become: 

and 

90 = [L + aE (Te - T a l  
+ A ( t )  kb(Ta - Tb) 

P d t  e 

from which the  following expression i s  obtained when 

s t a t e )  

dB = 0 
d t  

(s teady 

L 
3 
5 
6 

. 
- -  
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A comparison of equation ( A 3 )  with equation (Ab)  shows t h a t  f o r  steady 
ab la t ion  

A - 1  

It i s  noted t h a t  t h i s  value of A i s  independent of qo. 

5 
6 
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Before ab la t ion  starts the heat ing problem i s  represented by the 
following d i f f e r e n t i a l  equation and boundary conditions:  

w i t h  

L 
5 
5 
6 

Here it i s  assumed t h a t  qo(t)  i s  a monotonic increasing funct ion of t 
i n  the  range 0 < t < ta; f o r  example, 

.. 

n 
90 = a(;) 

The solut ion of equations (Bl) t o  (B4) i s  then found by s t ra ightforward 
appl icat ion of Laplace transform methods and i s  w r i t t e n  

where 

J W  

and i s  the m t h  i n t e g r a l  of the  complementary e r r o r  funct ion.  
ref.  7 . )  

(See 



L 
5 

where 

The surface temperature i s  found by pu t t ing  y = 0; t h a t  is ,  

n !  - n !  i;ln+lerfc o = - 

Thus the  surface temperature T, increases  with t according t o  
the  r e l a t i o n  

where 

22n+l 2 
(n !>  

1 En' = 

The coe f f i c i en t  E,' 
ana lys i s  i n  the  main tex t .  

i s  compared with t h a t  given by t h e  approximate 
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Figure 1.- Geometry near stagnation point. 
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